390,000 manufacturing enterprises in Italy 10% share of oil energy consumption in manufacturing The top three oil-consuming industrial sectors consume 46% of the final industrial energy consumption Italy represents 26% of EU-27's steam boiler production ## ITALY Case study: industrial heating #BeyondTheGasGrid Manufacturing accounts for 16% of Italy's economy, and oil represents 10% of energy consumption in the industrial sector. The sectors that consume the most oil are non-metallic minerals, machinery, and the chemical & petrochemical sector. This analysis considers the monetary and health impact of a machinery manufacturer switching from a fire-tube steam boiler that is fuelled by oil to a fire-tube boiled fuelled by LPG. LPG annual CO2 savings: 15% BioLPG annual CO2 savings: 78% 76% NOx emissions savings 96% Lifetime PM emissions savings €374,880 Annual energy bill savings Capital cost payback = < 2 years From 2030 onwards, it is assumed that the industrial boiler is fuelled by bioLPG. ## ITALY Case study: industrial heating #BeyondTheGasGrid ## Alternative technology options available: The table below compares how alternative technology options compare to an existing fire-tube boiler that is fueled by oil. These range from a fire-tube boiler fuelled by LPG, a water-tube boiler fuelled by coal and a biomass-fuelled CHP system. performs worse than existing oil-fired fire tube boiler performs better than existing oil-fired fire tube boiler | Technology
Options | Upfront cost* | Running cost | Lifetime CO ₂
reduction | Lifetime air
pollution reduction | |---|---|---|---|--| | Fire-tube
boiler: (LPG
fuelled) | Same | Lower than oil-
fuelled system,
assuming efficiency
improvements are
achieved | Lower than existing
oil-fired system
(15% if LPG used, up
to 80% if bioLPG
used) | Substantially lower
than existing oil-
fired system
(more than 70%) | | Water-
tube
boiler:
Coal-fuelled | 1-2 times more
expensive than an
oil-fuelled system | Substantially lower
than oil-fuelled
system. Price of
industrial coal is
very cheap | Considerably higher
than oil-fired
system. Coal has a
relatively higher
carbon intensity
(up to 50%) | Lower NOx
emissions (up to
40%) but higher PM
emissions (up to
300%) | | Back-
pressure
CHP:
(fuelled by
wood pellets) | 3-4 times more
expensive than oil-
fuelled system | Substantially lower
than oil-fuelled
system. Price of
pellets/logs is low | Substantially lower
than current oil-fired
system
(more than 90%) | Lower NOx
emissions (up to
30%) but higher PM
emissions (up to
100%) | ^{*}Upfront cost differences are case-specific; in this case the upfront cost for a heating system is modelled for an energy demand of \sim 25,000MWh/annual. <u>Sources</u>: PwC, European Commission, Fraunhofer, US Department of Energy, Covenant of Mayors, European Commission Oil Bulletin and Argus Media